

Dunham Clark

368 N Taylor Ave, Apt 301, Saint Louis, MO

dunham@wustl.edu | (269) 929 - 7617 | www.linkedin.com/in/dunhamclark

Education

University of Michigan

Bachelor of Science in Biology, Health, and Society

Ann Arbor, MI

May 2023

Relevant Coursework: Fundamentals of Cell Biology, Organic Chemistry, Microbiology, Biochemistry, Human Physiology

Bachelor of Science in Biopsychology, Cognition, and Neuroscience

May 2023

Relevant Coursework: Statistical Modeling & Data Visualization in R; Statistics, Cognitive Science, Qualtrics, Neurobiology

Scholarships & Awards

2024 ABRCMS Presentation Award

2023 Victoria Finnerty Award

2022 Gomberg Chemistry Scholarship

2020 Michigan Competitive Scholarship

2020 Regents Merit Scholarship

Research Experience

Ackerman Lab

St. Louis, MO

Research Technician II

July 2023 - Current

- Leveraged *Drosophila* mutants to dissect mitochondrial and cytoskeletal regulation of neural circuit development and activity, employing genetic crosses and RNAi-mediated knockdowns.
- Utilized confocal microscopy techniques including immunohistochemistry, advanced expansion microscopy, and electron microscopy to visualize subcellular structures in whole mount tissue.
- Designed custom primers, plasmids, and molecular constructs for efficient generation, validation, and functional analysis of transgenic *Danio rerio* (zebrafish) lines.
- Performed high-throughput CRISPR/Cas9 microinjections in zebrafish embryos, resulting in targeted genome edits and establishment of genetically defined mutant lines.
- Applied PCR-based genotyping and Sanger sequencing to accurately screen zebrafish populations, enabling identification and propagation of novel transgenic and knockout lines.

Yadlapalli Lab

Ann Arbor, MI

Research Assistant I

April 2021 - June 2023

- Interpreted and analyzed qualitative and quantitative data to elucidate molecular and genetic mechanisms underlying circadian clock regulation in *Drosophila*.
- Captured and processed high-resolution images in vivo and in vitro using laser confocal microscopy
- Employed qPCR and gel electrophoresis to validate genomic sequencing in *Drosophila*.
- Prepared publication-quality figures, scientific diagrams, and manuscript sections, contributing to peer-reviewed research articles and scientific presentations.
- Maintained meticulous laboratory records adhering to current Good Laboratory Practices (cGLPs)
- Upkept and calibrated laboratory instruments and systems

Publications

Clark D, Zolnoski S, Heckman E, Kann M, Ackerman S (2025, bioXiv). Activity-dependent mitochondrial transport in peri-synaptic glia drives motor function. In preparation.

Chen Q, Yuan Y, **Clark D**, Yadlapalli S (2025, bioXiv). Sequestration of clock proteins into repressive nuclear condensates orchestrates circadian gene repression. In review.

Chen Q, Yuan Y, **Clark D**, Yadlapalli S (2025, submitted) Moira condensates scaffold peripheral gene hubs for circadian chromatin control.

Yuan Y, **Clark D**, Tran R, Xiao Y, Yadlapalli S (2024). Subcellular Localization of DCO/CSNK1E and SLMB/BTRC is Critical for Post-Translational Regulation of PER in Drosophila. In *MOLECULAR BIOLOGY OF THE CELL*

Yuan Y, Padilla M-A, **Clark D**, Yadlapalli S (2022). Streamlined single-molecule RNA-FISH of core clock mRNAs in clock neurons in whole mount Drosophila brains. *Frontiers in Physiology*.

Presentations

Clark D, Zolnoski S, Heckman E, Kann M, Ackerman S. Activity-dependent mitochondrial transport in peri-synaptic glia drives motor function. *Journal of Cell Biology* (Presented as talk at Axon2025).

Clark, D, Zolnoski S, Heckman E, Kann M, Ackerman S. Activity-Dependent Regulation of Mitochondrial Transport in Astrocytes (Presented as poster at ABRCMS 2024, received ABRCMS 2024 Presentation Award)

Clark, D, Ackerman, S., *Defining the Contribution of the Dendritic Cytoskeleton to Critical Period Closure* (Presented at TAGC 2024)

Clark, D, Yuan, Y, Chen, Q, Wilson, C, Yadlapalli, S. Clock protein-chromatin complexes are assembled within nuclear condensates to enable circadian gene repression (Presented as poster at GSA Dros23, recipient of Victoria Finnerty Award)

Leadership/Extracurricular Experience

CURIS - Public Health Advocacy

Ann Arbor, MI

Internal Vice President

April 2021 - April 2023

- Coordinate seminars and panels with public health professionals to educate both club and community members
- Exercise and build basic team effectiveness skills {e.g., commitment, feedback} within the immediate work group
- Co-author on Program for Multicultural Health and Department of Equity and Inclusion collaborative newsletter
- Produce policy recommendations and reform for state legislature to be presented to 110 legislators

University of Michigan Rotaract

Ann Arbor, MI

Secretary

May 2021 - April 2023

- Organize club files and resources inside Google Suite to increase storage efficiency by 17%
- Act as point of communication for community partnership and public relations

- Brainstorm new ideas for social innovation through volunteering with an environmentally-focused lens

Volunteering/Outreach

Amazing Brain Carnival

Volunteer Scientist

Saint Louis, MO

Spring 2024 - Current

- Facilitated interactive neuroscience demonstrations at the Saint Louis Science Center's SciFest, engaging children and families in hands-on learning.
- Communicated complex neuroscience concepts in clear, accessible language to a wide and diverse audience, ranging from young children to adults.
- Promoted STEM education by sparking curiosity in children who may have limited early exposure to neuroscience.
- Collaborated with fellow volunteers to create an immersive, inclusive outreach experience for the St. Louis community.

Brain Discovery

Volunteer Neuroscientist

Saint Louis, MO

Spring 2024 - Current

- Engaged 4th–6th grade students in neuroscience outreach through weekly classroom visits across a six-week program.
- Led hands-on experiments and interactive activities exploring brain structure, nervous system function, and the scientific method.
- Fostered curiosity and scientific literacy by guiding students in observations, data collection, and critical thinking.
- Collaborated with teachers and fellow scientists to create an accessible and inspiring STEM learning environment.

Technical Skills

Computational: BLAST, Arduino, Microsoft Office Suite, R, Python, Benchling, Adobe Creative Suite, MATLAB, ImageJ/Fiji, Graphpad Prism, GitHub/Git, RNA-seq/ATAC-seq analysis, statistical analysis, statistical modelling, Data wrangling, SnapGene, machine learning,

Wet Laboratory: CRISPR/Cas9 genome editing, RNAi knockdown, PCR (standard and qPCR), gel electrophoresis, Sanger sequencing, primer and plasmid design, cloning, immunohistochemistry (IHC), confocal microscopy, expansion microscopy (ExM), electron microscopy (TEM, SEM), single-molecule RNA-FISH, *Drosophila* genetics, zebrafish transgenics, genotyping, tissue clearing, whole mount preparation, cGLP-compliant lab practices, live-imaging

Languages

English (Native)

Spanish (Conversational)

